Terapias usuales y emergentes en colangitis biliar primaria

Autores/as

DOI:

https://doi.org/10.52784/27112330.156

Palabras clave:

colangitis biliar primaria, autoinmune, anticuerpos, ácido ursodesoxicólico, inmunomoduladores.

Resumen

La colangitis biliar primaria (CBP) es una enfermedad autoinmune caracterizada por daño de los conductos biliares intrahepáticos, que hasta ahora tiene mecanismos poco claros de respuesta celular inflamatoria, con la mitocondria como orgánulo blanco. Durante varias décadas han sido el control de los ácidos biliares y el tratamiento de la colestasis lo que ha permitido el manejo médico de los pacientes, logrando un impacto parcial en el curso y la progresión de la enfermedad, mejorando además la sobrevida de los individuos. Con el hallazgo de nuevos mecanismos fisiopatológicos se han iniciado estudios con terapias inmunomoduladoras, que podrían ser prometedoras en el mejoramiento de la calidad de vida de los pacientes que padecen la enfermedad. Aún los resultados son inciertos, y se hacen necesarios más estudios para aclarar el papel de los nuevos tratamientos en el arsenal terapéutico disponible para la CBP.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Juan Camilo Díaz-Duque, Universidad de Antioquia

Estudiante de Medicina. Grupo de Gastrohepatología, Universidad de Antioquia. Medellín, Colombia.

Valeria Palacio-Valencia, Universidad de Antioquia

Estudiante de Medicina. Grupo de Gastrohepatología, Universidad de Antioquia. Medellín, Colombia.

Julissa Suárez-Meneses, Universidad de Antioquia

Estudiante de Medicina. Grupo de Gastrohepatología, Universidad de Antioquia. Medellín, Colombia.

Jesús Antonio Montaña-López, Universidad de Antioquia

Estudiante de Medicina. Grupo de Gastrohepatología, Universidad de Antioquia. Medellín, Colombia.

Eliana Palacio-Sánchez, Universidad de Antioquia

Médica General. Gestión Académica, Grupo de Investigación de Gastrohepatología, Universidad de Antioquia. Medellín, Colombia.

Referencias bibliográficas

Parés A. Colangitis biliar primaria. Med Clin 2018;151:242-249. https://doi.org/10.1016/j.medcli.2017.12.021.

Prieto J, Banales JM, Medina JF. Primary biliary cholangitis: pathogenic mechanisms. Curr Opin Gastroenterol 2021;37:91-98. https://doi.org/10.1097/mog.0000000000000703.

Chalifoux SL, Konyn PG, Choi G, Saab S. Extrahepatic manifestations of primary biliary cholangitis. Gut Liver 2017;11:771-780. https://doi.org/10.5009/gnl16365.

Beuers U, Gershwin ME, Gish RG, Invernizzi P, Jones DE, Lindor K, et al. Changing nomenclature for PBC: From 'cirrhosis' to 'cholangitis'. Clin Res Hepatol Gastroenterol 2015;39:e57-59. https://doi.org/10.1016/j.clinre.2015.08.001.

Younossi ZM, Bernstein D, Shiffman ML, Kwo P, Kim WR, Kowdley KV, et al. Diagnosis and management of primary biliary cholangitis. Am J Gastroenterol 2019;114:48-63. https://doi.org/10.1038/s41395-018-0390-3.

Gonzalez RS, Washington K. Primary biliary cholangitis and Autoimmune Hepatitis. Surg Pathol Clin 2018;11:329-349. https://doi.org/10.1016/j.path.2018.02.010.

Pullen R. A clinical review of primary biliary cholangitis. Gastroenterol Nurs 2020;43:E48-e55. https://doi.org/10.1097/sga.0000000000000480.

Tanaka A. Current understanding of primary biliary cholangitis. Clin Mol Hepatol 2021;27:1-21. https://doi.org/10.3350/cmh.2020.0028.

Joshita S, Umemura T, Tanaka E, Ota M. Genetics and epigenetics in the pathogenesis of primary biliary cholangitis. Clin J Gastroenterol 2018;11:11-18. https://doi.org/10.1007/s12328-017-0799-z.

Joshita S, Umemura T, Tanaka E, Ota M. Genetic contribution to the pathogenesis of primary biliary cholangitis. J Immunol Res 2017;2017:3073504. https://doi.org/10.1155/2017/3073504.

Schiff ER, Maddrey WC, Reddy KR. Schiff's Diseases of the Liver. New Jersey, United States: Wiley-Blackwell; 2017. ISBN: 978-1-119-25122-4.

Bowlus CL, Gershwin ME. The diagnosis of primary biliary cirrhosis. Autoimmun Rev 2014;13:441-444. https://doi.org/10.1016/j.autrev.2014.01.041.

European Association for the Study of the Liver (EASL). EASL Clinical Practice Guidelines: The diagnosis and management of patients with primary biliary cholangitis. J Hepatol 2017;67:145-172. https://doi.org/10.1016/j.jhep.2017.03.022.

Lindor KD, Bowlus CL, Boyer J, Levy C, Mayo M. Primary biliary cholangitis: 2018 practice guidance from the american association for the study of liver diseases. Hepatology 2019;69:394-419. https://doi.org/10.1002/hep.30145.

Lindor KD, Gershwin ME, Poupon R, Kaplan M, Bergasa NV, Heathcote EJ. Primary biliary cirrhosis. Hepatology 2009;50:291-308. https://doi.org/10.1002/hep.22906.

Selmi C, Bowlus CL, Gershwin ME, Coppel RL. Primary biliary cirrhosis. Lancet 2011;377:1600-1609. https://doi.org/10.1016/s0140-6736(10)61965-4.

Assis DN. Chronic complications of cholestasis: Evaluation and management. Clin Liver Dis 2018;22:533-544. https://doi.org/10.1016/j.cld.2018.03.014.

Woreta TA, Alqahtani SA. Evaluation of abnormal liver tests. Med Clin North Am 2014;98:1-16. https://doi.org/10.1016/j.mcna.2013.09.005.

Jiang L, Zhang H, Xiao D, Wei H, Chen Y. Farnesoid X receptor (FXR): Structures and ligands. Comput Struct Biotechnol J 2021;19:2148-2159. https://doi.org/10.1016/j.csbj.2021.04.029.

Lleo A, Selmi C, Invernizzi P, Podda M, Coppel RL, Mackay IR, et al. Apotopes and the biliary specificity of primary biliary cirrhosis. Hepatology 2009;49:871-879. https://doi.org/https://doi.org/10.1002/hep.22736.

Kita H, Lian ZX, Van de Water J, He XS, Matsumura S, Kaplan M, et al. Identification of HLA-A2-restricted CD8(+) cytotoxic T cell responses in primary biliary cirrhosis: T cell activation is augmented by immune complexes cross-presented by dendritic cells. J Exp Med 2002;195:113-123. https://doi.org/10.1084/jem.20010956.

Shimoda S, Miyakawa H, Nakamura M, Ishibashi H, Kikuchi K, Kita H, et al. CD4 T-cell autoreactivity to the mitochondrial autoantigen PDC-E2 in AMA-negative primary biliary cirrhosis. J Autoimmun 2008;31:110-115. https://doi.org/10.1016/j.jaut.2008.05.003.

Lleo A, Bowlus CL, Yang GX, Invernizzi P, Podda M, Van de Water J, et al. Biliary apotopes and anti-mitochondrial antibodies activate innate immune responses in primary biliary cirrhosis. Hepatology 2010;52:987-998. https://doi.org/10.1002/hep.23783.

Yeaman SJ, Danner DJ, Mutimer DJ, Fussey SPM, James OFW, Bassendine MF. Primary biliary cirrhosis: Identification of two major M2 mitochondrial autoantigens. Lancet 1988;331:1067-1070. https://doi.org/10.1016/S0140-6736(88)91894-6.

Rong G, Zhou Y, Xiong Y, Zhou L, Geng H, Jiang T, et al. Imbalance between T helper type 17 and T regulatory cells in patients with primary biliary cirrhosis: the serum cytokine profile and peripheral cell population. J Clin Exp Immunol 2009;156:217-225. https://doi.org/https://doi.org/10.1111/j.1365-2249.2009.03898.x.

Tsuda M, Ambrosini YM, Zhang W, Yang GX, Ando Y, Rong G, et al. Fine phenotypic and functional characterization of effector cluster of differentiation 8 positive T cells in human patients with primary biliary cirrhosis. Hepatology 2011;54:1293-1302. https://doi.org/10.1002/hep.24526.

Yokoyama T, Komori A, Nakamura M, Takii Y, Kamihira T, Shimoda S, et al. Human intrahepatic biliary epithelial cells function in innate immunity by producing IL-6 and IL-8 via the TLR4-NF-kappaB and -MAPK signaling pathways. Liver Int 2006;26:467-476. https://doi.org/10.1111/j.1478-3231.2006.01254.x.

Shimoda S, Harada K, Niiro H, Taketomi A, Maehara Y, Tsuneyama K, et al. CX3CL1 (fractalkine): a signpost for biliary inflammation in primary biliary cirrhosis. Hepatology 2010;51:567-575. https://doi.org/10.1002/hep.23318.

Shimoda S, Hisamoto S, Harada K, Iwasaka S, Chong Y, Nakamura M, et al. Natural killer cells regulate T cell immune responses in primary biliary cirrhosis. Hepatology 2015;62:1817-1827. https://doi.org/10.1002/hep.28122.

Selmi C, Mayo MJ, Bach N, Ishibashi H, Invernizzi P, Gish RG, et al. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology 2004;127:485-492. https://doi.org/10.1053/j.gastro.2004.05.005.

Qiu F, Tang R, Zuo X, Shi X, Wei Y, Zheng X, et al. A genome-wide association study identifies six novel risk loci for primary biliary cholangitis. Nat Commun 2017;8:14828. https://doi.org/10.1038/ncomms14828.

Corpechot C, Chrétien Y, Chazouillères O, Poupon R. Demographic, lifestyle, medical and familial factors associated with primary biliary cirrhosis. J Hepatol 2010;53:162-169. https://doi.org/10.1016/j.jhep.2010.02.019.

Amano K, Leung PS, Rieger R, Quan C, Wang X, Marik J, et al. Chemical xenobiotics and mitochondrial autoantigens in primary biliary cirrhosis: identification of antibodies against a common environmental, cosmetic, and food additive, 2-octynoic acid. J Immunol 2005;174:5874-5883. https://doi.org/10.4049/jimmunol.174.9.5874.

Bogdanos DP, Baum H, Vergani D, Burroughs AK. The role of E. coli infection in the pathogenesis of primary biliary cirrhosis. Dis Markers 2010;29:301-311. https://doi.org/10.3233/dma-2010-0745.

Beuers U, Hohenester S, de Buy Wenniger LJ, Kremer AE, Jansen PL, Elferink RP. The biliary HCO(3)(-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 2010;52:1489-1496. https://doi.org/10.1002/hep.23810.

Hohenester S, Wenniger LM, Paulusma CC, van Vliet SJ, Jefferson DM, Elferink RP, et al. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 2012;55:173-183. https://doi.org/10.1002/hep.24691.

Prieto J, Qian C, García N, Díez J, Medina JF. Abnormal expression of anion exchanger genes in primary biliary cirrhosis. Gastroenterology 1993;105:572-578. https://doi.org/10.1016/0016-5085(93)90735-u.

Banales JM, Sáez E, Uriz M, Sarvide S, Urribarri AD, Splinter P, et al. Up-regulation of microRNA 506 leads to decreased Cl-/HCO3- anion exchanger 2 expression in biliary epithelium of patients with primary biliary cirrhosis. Hepatology 2012;56:687-697. https://doi.org/10.1002/hep.25691.

Chang JC, Go S, Verhoeven AJ, Beuers U, Oude Elferink RPJ. Role of the bicarbonate-responsive soluble adenylyl cyclase in cholangiocyte apoptosis in primary biliary cholangitis; a new hypothesis. Biochim Biophys Acta Mol Basis Dis 2018;1864:1232-1239. https://doi.org/10.1016/j.bbadis.2017.09.022.

Paumgartner G, Beuers U. Mechanisms of action and therapeutic efficacy of ursodeoxycholic acid in cholestatic liver disease. Clin Liver Dis 2004;8:67-81. https://doi.org/10.1016/s1089-3261(03)00135-1.

Lu M, Zhou Y, Haller IV, Romanelli RJ, VanWormer JJ, Rodriguez CV, et al. Increasing prevalence of primary biliary cholangitis and reduced mortality with treatment. Clin Gastroenterol Hepatol 2018;16:1342-1350. https://doi.org/10.1016/j.cgh.2017.12.033.

Goel A, Kim WR. Natural history of primary biliary cholangitis in the ursodeoxycholic acid era: Role of scoring systems. Clin Liver Dis 2018;22:563-578. https://doi.org/10.1016/j.cld.2018.03.007.

Cheung AC, Lammers WJ, Murillo Perez CF, van Buuren HR, Gulamhusein A, Trivedi PJ, et al. Effects of age and sex of response to ursodeoxycholic acid and transplant-free survival in patients with primary biliary cholangitis. Clin Gastroenterol Hepatol 2019;17:2076-2084.e2072. https://doi.org/10.1016/j.cgh.2018.12.028.

Efe C, Ozaslan E, Heurgué-Berlot A, Kav T, Masi C, Purnak T, et al. Sequential presentation of primary biliary cirrhosis and autoimmune hepatitis. Eur J Gastroenterol Hepatol 2014;26:532-537. https://doi.org/10.1097/meg.0000000000000075.

Galoosian A, Hanlon C, Zhang J, Holt EW, Yimam KK. Clinical updates in primary biliary cholangitis: Trends, epidemiology, diagnostics, and new therapeutic approaches. J Clin Transl Hepatol 2020;8:49-60. https://doi.org/10.14218/jcth.2019.00049.

Bowlus CL, Kenney JT, Rice G, Navarro R. Primary biliary cholangitis: Medical and specialty pharmacy management update. J Manag Care Spec Pharm 2016;22:S3-s15. https://doi.org/10.18553/jmcp.2016.22.10-a-s.s3.

Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W, Murzilli S, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 2011;60:463-472. https://doi.org/10.1136/gut.2010.212159.

Modica S, Petruzzelli M, Bellafante E, Murzilli S, Salvatore L, Celli N, et al. Selective activation of nuclear bile acid receptor FXR in the intestine protects mice against cholestasis. Gastroenterology 2012;142:355-365.e351-354. https://doi.org/10.1053/j.gastro.2011.10.028.

Nevens F, Andreone P, Mazzella G, Strasser SI, Bowlus C, Invernizzi P, et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med 2016;375:631-643. https://doi.org/10.1056/NEJMoa1509840.

Parés A, Shiffman M, Vargas V, Invernizzi P, Malecha ES, Liberman A, et al. Reduction and stabilization of bilirubin with obeticholic acid treatment in patients with primary biliary cholangitis. Liver Int 2020;40:1121-1129. https://doi.org/10.1111/liv.14429.

Floreani A, Cazzagon N, Franceschet I, Canesso F, Salmaso L, Baldo V. Metabolic syndrome associated with primary biliary cirrhosis. J Clin Gastroenterol 2015;49:57-60. https://doi.org/10.1097/mcg.0000000000000029.

Sorokin A, Brown JL, Thompson PD. Primary biliary cirrhosis, hyperlipidemia, and atherosclerotic risk: a systematic review. Atherosclerosis 2007;194:293-299. https://doi.org/10.1016/j.atherosclerosis.2006.11.036.

Floreani A, Mangini C. Primary biliary cholangitis: Old and novel therapy. Eur J Intern Med 2018;47:1-5. https://doi.org/10.1016/j.ejim.2017.06.020.

Erlinger S. Obeticholic acid in primary biliary cholangitis. Clin Res Hepatol Gastroenterol 2017;41:3-5. https://doi.org/10.1016/j.clinre.2016.09.006.

Webb GJ, Rahman SR, Levy C, Hirschfield GM. Low risk of hepatotoxicity from rifampicin when used for cholestatic pruritus: a cross-disease cohort study. Aliment Pharmacol Ther 2018;47:1213-1219. https://doi.org/10.1111/apt.14579.

Myers RP, Swain MG, Lee SS, Shaheen AA, Burak KW. B-cell depletion with rituximab in patients with primary biliary cirrhosis refractory to ursodeoxycholic acid. Am J Gastroenterol 2013;108:933-941. https://doi.org/10.1038/ajg.2013.51.

Bolier R, de Vries ES, Parés A, Helder J, Kemper EM, Zwinderman K, et al. Fibrates for the treatment of cholestatic itch (FITCH): study protocol for a randomized controlled trial. Trials 2017;18:230. https://doi.org/10.1186/s13063-017-1966-8.

Enanta Pharmaceuticals. A phase 2 dose ranging, randomized, double blind, placebo-controlled study evaluating the safety, tolerability, pharmacokinetics and efficacy of EDP-305 in subjects with primary biliary cholangitis (PBC) with or without an inadequate response to ursodeoxycholic acid (UDCA). USA: ClinicalTrials.gov; 2021. Report No.: NCT03394924. Acceso 28 de diciembre de 2021. Disponible en https://clinicaltrials.gov/ct2/show/NCT03394924

Jiang L, Xiao D, Li Y, Dai S, Qu L, Chen X, et al. Structural basis of tropifexor as a potent and selective agonist of farnesoid X receptor. Biochem Biophys Res Commun 2021;534:1047-1052. https://doi.org/10.1016/j.bbrc.2020.10.039.

Novartis Pharmaceuticals. A multi-part, randomized, double-blind, placebo-controlled study to assess the safety, tolerability and efficacy of tropifexor (LJN452) in patients with primary biliary cholangitis. USA: ClinicalTrials.gov; 2020. Report No.: NCT02516605. Acceso 27 de diciembre de 2021. Disponible en https://clinicaltrials.gov/ct2/show/results/NCT02516605.

Gilead Sciences. A Phase 2, Randomized, Double-Blind, Placebo-Controlled Study Evaluating the Safety, Tolerability, and Efficacy of GS-9674 in Subjects With Primary Biliary Cholangitis Without Cirrhosis. USA: ClinicalTrials.gov; 2020. Report No.: NCT02943447. Acceso 27 de diciembre de 2021. Disponible en https://clinicaltrials.gov/ct2/show/NCT02943447.

Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 2015;62:720-733. https://doi.org/10.1016/j.jhep.2014.10.039.

Santiago P, Scheinberg AR, Levy C. Cholestatic liver diseases: new targets, new therapies. Therap Adv Gastroenterol 2018;11:1756284818787400. https://doi.org/10.1177/1756284818787400.

Kok T, Wolters H, Bloks VW, Havinga R, Jansen PL, Staels B, et al. Induction of hepatic ABC transporter expression is part of the PPARalpha-mediated fasting response in the mouse. Gastroenterology 2003;124:160-171. https://doi.org/10.1053/gast.2003.50007.

Kok T, Bloks VW, Wolters H, Havinga R, Jansen PL, Staels B, et al. Peroxisome proliferator-activated receptor alpha (PPARalpha)-mediated regulation of multidrug resistance 2 (Mdr2) expression and function in mice. Biochem J 2003;369:539-547. https://doi.org/10.1042/bj20020981.

Matsumoto T, Miyazaki H, Nakahashi Y, Hirohara J, Seki T, Inoue K, et al. Multidrug resistance3 is in situ detected in the liver of patients with primary biliary cirrhosis, and induced in human hepatoma cells by bezafibrate. Hepatol Res 2004;30:125-136. https://doi.org/10.1016/j.hepres.2004.08.015.

Shoda J, Inada Y, Tsuji A, Kusama H, Ueda T, Ikegami T, et al. Bezafibrate stimulates canalicular localization of NBD-labeled PC in HepG2 cells by PPARalpha-mediated redistribution of ABCB4. J Lipid Res 2004;45:1813-1825. https://doi.org/10.1194/jlr.M400132-JLR200.

Zhang Y, Li S, He L, Wang F, Chen K, Li J, et al. Combination therapy of fenofibrate and ursodeoxycholic acid in patients with primary biliary cirrhosis who respond incompletely to UDCA monotherapy: a meta-analysis. Drug Des Devel Ther 2015;9:2757-2766. https://doi.org/10.2147/dddt.S79837.

Chung SW, Lee JH, Kim MA, Leem G, Kim SW, Chang Y, et al. Additional fibrate treatment in UDCA-refractory PBC patients. Liver Int 2019;39:1776-1785. https://doi.org/10.1111/liv.14165.

Cheung AC, Lapointe-Shaw L, Kowgier M, Meza-Cardona J, Hirschfield GM, Janssen HL, et al. Combined ursodeoxycholic acid (UDCA) and fenofibrate in primary biliary cholangitis patients with incomplete UDCA response may improve outcomes. Aliment Pharmacol Ther 2016;43:283-293. https://doi.org/10.1111/apt.13465.

Genfit. A multicenter, randomized, double-blind, placebo-controlled, phase 2 study to evaluate the efficacy and safety of elafibranor at doses of 80 mg and 120mg after 12 weeks of treatment in patients with primary biliary cholangitis and inadequate response to ursodeoxycholic acid. USA: ClinicalTrials.gov 2019. Report No.: NCT03124108. Acceso 17 de febrero de 2022. Disponible en https://clinicaltrials.gov/ct2/show/NCT03124108.

CymaBay Therapeutics, Inc. An 8-week, dose ranging, open label, randomized, phase 2 study with a 44-week extension, to evaluate the safety and efficacy of mbx-8025 in subjects with primary biliary cholangitis (PBC) and an inadequate response to or intolerance to ursodeoxycholic acid (UDCA). USA: ClinicalTrials.gov. Report No.: NCT02955602. Acceso 17 de febrero de 2022. Disponible en https://clinicaltrials.gov/ct2/show/NCT02955602.

CymaBay Therapeutics, Inc. A 52-week, placebo-controlled, randomized, phase 3 study to evaluate the safety and efficacy of seladelpar in subjects with primary biliary cholangitis (PBC) and an inadequate response to or an intolerance to ursodeoxycholic acid (UDCA) USA: ClinicalTrials.gov; 2021. Report No.: NCT03602560. Acceso 17 de febrero de 2022. Disponible en https://clinicaltrials.gov/ct2/show/NCT03602560.

Li Z, Lin B, Lin G, Wu Y, Jie Y, Li X, et al. Circulating FGF19 closely correlates with bile acid synthesis and cholestasis in patients with primary biliary cirrhosis. PLoS One 2017;12:e0178580. https://doi.org/10.1371/journal.pone.0178580.

Etherington RE, Millar BJM, Innes BA, Jones DEJ, Kirby JA, Brain JG. Bile acid receptor agonists in primary biliary cholangitis: Regulation of the cholangiocyte secretome and downstream T cell differentiation. FASEB Bioadv 2019;1:332-343. https://doi.org/10.1096/fba.2018-00046.

Jones SA. Physiology of FGF15/19. Adv Exp Med Biol 2012;728:171-182. https://doi.org/10.1007/978-1-4614-0887-1_11.

Wong KA, Bahar R, Liu CH, Bowlus CL. Current treatment options for primary biliary cholangitis. Clin Liver Dis 2018;22:481-500. https://doi.org/10.1016/j.cld.2018.03.003.

Chen W, Wei Y, Xiong A, Li Y, Guan H, Wang Q, et al. Comprehensive analysis of serum and fecal bile acid profiles and interaction with gut microbiota in primary biliary cholangitis. Clin Rev Allergy Immunol 2020;58:25-38. https://doi.org/10.1007/s12016-019-08731-2.

Gochanour EM, Kowdley KV. Investigational drugs in early phase development for primary biliary cholangitis. Expert Opin Investig Drugs 2021;30:131-141. https://doi.org/10.1080/13543784.2021.1857364.

Bahar R, Wong KA, Liu CH, Bowlus CL. Update on new drugs and those in development for the treatment of primary biliary cholangitis. Gastroenterol Hepatol 2018;14:154-163.

Zhou M, Luo J, Chen M, Yang H, Learned RM, DePaoli AM, et al. Mouse species-specific control of hepatocarcinogenesis and metabolism by FGF19/FGF15. J Hepatol 2017;66:1182-1192. https://doi.org/10.1016/j.jhep.2017.01.027.

Mayo MJ, Wigg AJ, Leggett BA, Arnold H, Thompson AJ, Weltman M, et al. NGM282 for treatment of patients with primary biliary cholangitis: A multicenter, randomized, double-blind, placebo-controlled trial. Hepatol Commun 2018;2:1037-1050. https://doi.org/10.1002/hep4.1209.

Nicholes K, Guillet S, Tomlinson E, Hillan K, Wright B, Frantz GD, et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am J Pathol 2002;160:2295-2307. https://doi.org/10.1016/s0002-9440(10)61177-7.

Li Z, Liu Y, Yang F, Pang J, Wu Y, Chong Y, et al. Dysregulation of circulating FGF19 and bile acids in primary biliary cholangitis-autoimmune hepatitis overlap syndrome. Biomed Res Int 2020;2020:1934541. https://doi.org/10.1155/2020/1934541.

Goodman LS, Bunton LL, Hilal-Dandan R, Knollmann BC, Gilman AG, Gilman A, et al. Las bases farmacológicas de la terapéutica. México D.F.: McGraw-Hill; 2019. ISBN: 9781259584732 1259584739.

Shah RA, Kowdley KV. Current and potential treatments for primary biliary cholangitis. Lancet Gastroenterol Hepatol 2020;5:306-315. https://doi.org/10.1016/s2468-1253(19)30343-7.

Tsuda M, Moritoki Y, Lian Z-X, Zhang W, Yoshida K, Wakabayashi K, et al. Biochemical and immunologic effects of rituximab in patients with primary biliary cirrhosis and an incomplete response to ursodeoxycholic acid. Hepatology 2012;55:512-521. https://doi.org/https://doi.org/10.1002/hep.24748.

Khanna A, Jopson L, Howel D, Bryant A, Blamire A, Newton JL, et al. Rituximab for the treatment of fatigue in primary biliary cholangitis (formerly primary biliary cirrhosis): a randomised controlled trial. Efficacy and Mechanism Evaluation. Southampton (UK): NIHR Journals Library; 2018. p. https://doi.org/10.3310/eme05020.

Gao L, Wang L, Woo E, He X, Yang G, Bowlus C, et al. Clinical management of primary biliary cholangitis-strategies and evolving trends. Clin Rev Allergy Immunol 2020;59:175-194. https://doi.org/10.1007/s12016-019-08772-7.

Janssen Research & Development. A phase 2, multi-center, randomized, double-blind, placebo-controlled, parallel-group study evaluating the efficacy and safety of ustekinumab in subjects with primary biliary cirrhosis who had an inadequate response to ursodeoxycholic acid (UDCA). USA: CinicalTrials.gov; 2016 Report No.: NCT01389973. Acceso 10 de febrero de 2022. Disponible en https://clinicaltrials.gov/ct2/show/NCT01389973.

Popp F, Semela D, von Kempis J, Mueller RB. Improvement of primary biliary cholangitis (PBC) under treatment with sulfasalazine and abatacept. BMJ Case Rep 2018;2018:bcr2018224205. https://doi.org/10.1136/bcr-2018-224205.

Bristol-Myers Squibb. Abatacept for the treatment of primary biliary cirrhosis with an incomplete biochemical response to ursodeoxycholic acid. USA: ClinicalTrials.gov; 2020. Acceso 17 de febrero de 2022. Disponible en https://clinicaltrials.gov/ct2/show/NCT02078882.

Arsenijevic A, Harrell CR, Fellabaum C, Volarevic V. Mesenchymal stem cells as new therapeutic agents for the treatment of primary biliary cholangitis. Anal Cell Pathol (Amst) 2017;2017:7492836. https://doi.org/10.1155/2017/7492836.

Ying H. Mesenchymal stem cell transplantation for refractory primary biliary cholangitis, a randomized double-blind placebo controlled trial. ClinicalTrials.gov; 2018. Report No.: NCT03668145. Acceso 17 de febrero de 2022. Disponible en https://clinicaltrials.gov/ct2/show/NCT03668145.

EA Pharma Co., Ltd. A clinical phase 2 study of E6011 in Japanese subjects with primary biliary cholangitis inadequately responding to ursodeoxycholic acid USA: ClinicalTrials.gov; 2019 Report No.: NCT03092765. Acceso 17 de febrero de 2022. Disponible en https://clinicaltrials.gov/ct2/show/NCT03092765.

Eli Lilly and Company. A randomized, double-blind, placebo-controlled, proof-of-concept study evaluating the efficacy and safety of baricitinib (LY3009104) in patients with primary biliary cholangitis who have an inadequate response or are intolerant to UDCA. USA: ClinicalTrials.gov; 2020 Report No.: NCT03742973. Acceso 17 de febrero de 2022. Disponible en https://clinicaltrials.gov/ct2/show/NCT03742973.

Arena Pharmaceuticals. An open-label, pilot, proof of concept study to evaluate the safety, tolerability, and efficacy of oral etrasimod (APD334) in patients with primary biliary cholangitis. USA: ClinicalTrials.gov; 2020. Report No.: NCT03155932. Acceso 17 de febrero de 2022. Disponible en https://clinicaltrials.gov/ct2/show/NCT03155932.

Fast Forward Pharmaceuticals. A phase I/II, open label, multicenter, pilot dose escalation study to evaluate the safety, tolerability and pharmacodynamics of FFP104 in subjects previously diagnosed with primary biliary cirrhosis (PBC). ClinicalTrials.gov; 2016. Report No.: NCT02193360. Acceso 17 de febrero de 2022. Disponible en https://clinicaltrials.gov/ct2/show/NCT02193360.

Montano-Loza AJ, Hansen BE, Corpechot C, Roccarina D, Thorburn D, Trivedi P, et al. Factors associated with recurrence of primary biliary cholangitis after liver transplantation and effects on graft and patient survival. Gastroenterology 2019;156:96-107. https://doi.org/10.1053/j.gastro.2018.10.001.

European Association for the Study of the Liver (EASL). EASL Clinical Practice Guidelines: Liver transplantation. J Hepatol 2016;64:433-485. https://doi.org/10.1016/j.jhep.2015.10.006.

Corpechot C, Chazouillères O, Belnou P, Montano-Loza AJ, Mason A, Ebadi M, et al. Long-term impact of preventive UDCA therapy after transplantation for primary biliary cholangitis. J Hepatol 2020;73:559-565. https://doi.org/10.1016/j.jhep.2020.03.043.

Descargas

Publicado

2022-07-05

Cómo citar

Díaz-Duque, J. C., Palacio-Valencia, V., Suárez-Meneses, J., Montaña-López, J. A., & Palacio-Sánchez, E. (2022). Terapias usuales y emergentes en colangitis biliar primaria. Hepatología, 3(2), 155–175. https://doi.org/10.52784/27112330.156

Número

Sección

Artículos de revisión
QR Code
Crossref Cited-by logo

Algunos artículos similares: